Analysis of DRIE Uniformity

نویسنده

  • Tyrone F. Hill
چکیده

A quantitative model capturing pattern density effects in Deep Reactive Ion Etch (DRIE), which are important in MEMS, is presented. Our previous work has explored the causes of wafer-level variation and demonstrated die-to-die interactions resulting from pattern density and reactant species consumption. Several reports have focused on experimental evidence and modeling of feature level (aspect ratio) dependencies. This thesis contributes a computationally efficient and effective modeling approach which focuses on layout pattern density-induced nonuniformity in DRIE. This is a key component in an integrated model combining wafer-, die-, and feature-level DRIE dependencies to predict etch depth for an input layout and a characterized etch tool and process. The modeling approach proposed here is inspired by previous work in modeling of chemical mechanical polishing (CMP). Computationally, this involves the convolution of an etch "layout impulse response" function or filter with the layout information (or equivalently but more efficiently the multiplication of FFTs). The proposed model is validated by using a mask layer from the MIT Microengine project as a demonstration layout. The model can be tuned to predict the etch behavior to an accuracy of 0.1% RMS normalized error. Furthermore, a feature level model, which considers the effects of sidewall loading on the depletion of reactants is presented. Finally, methods of synthesizing dummy features to improve across-die uniformity in a layout are explored; a by tiling bare areas of the wafer into "fill zones," an improvement in intra-die uniformity is seen. In summary, a semi-empirical modeling approach has been developed for predicting the layout dependent pattern density nonuniformities present in DRIE. The approach can be tuned to specific tools and processes, and is computationally efficient. The model can serve as the basis for layout optimization to improve DRIE uniformity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microfabrication of 3D silicon MEMS structures using gray-scale lithography and deep reactive ion etching

Micromachining arbitrary 3D silicon structures for micro-electromechanical systems can be accomplished using gray-scale lithography along with dry anisotropic etching. In this study, we have investigated the use of deep reactive ion etching (DRIE) and the tailoring of etch selectivity for precise fabrication. Silicon loading, the introduction of an O2 step, wafer electrode power, and wafer temp...

متن کامل

Characterization and Modeling of Pattern Dependencies and Time Evolution in Plasma Etching

A quantitative model capturing pattern dependent effects and time evolution of the etch rate in Deep Reactive Ion Etching (DRIE) is presented. DRIE is a key process for pattern formation in semiconductor fabrication. Non-uniformities are caused due to microloading and aspect ratio dependencies. The etch rate varies over time and lateral etch consumes some of the etching species. This thesis con...

متن کامل

Characterization and Modeling of Wafer and Die Level Uniformity in Deep Reactive Ion Etching (DRIE)

Wafer and die level uniformity effects in Deep Reactive Ion Etching (DRIE) are quantitatively modeled and characterized. A two-level etching model has been developed to predict non-uniformities in high-speed rotating microstructures. The separation of wafer level and die level effects is achieved by sequentially etching wafers with uniformly distributed holes. The wafer level loadings range fro...

متن کامل

VERY DEEP TRENCHES IN SILICON WAFER USING DRIE METHOD WITH ALUMINUM MASK

Abstract: In this paper, a DRIE process for fabricating MEMS silicon trenches with a depth of more than 250 m is described. The DRIE was produced in oxygen-added sulfur hexafluoride (SF6) plasma, with sample cooling to cryogenic temperature using a Plasmalab System 100 ICP 180 at different RF powers. A series of experiments were performed to determine the etch rate and selectivity of the some m...

متن کامل

Effect of Process Parameters on the Surface Morphology and Mechanical Performance of Silicon Structures After Deep Reactive Ion Etching (DRIE)

The ability to predict and control the influence of process parameters during silicon etching is vital for the success of most MEMS devices. In the case of deep reactive ion etching (DRIE) of silicon substrates, experimental results indicate that etch performance as well as surface morphology and post-etch mechanical behavior have a strong dependence on processing parameters. In order to unders...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014